
1

PASCAL PROGRAMMING
The programming language PASCAL was developed in the late 1960’s by Professor Niklaus Wirth at the
Eidgeossische Technische Hochschule, Zurich, Switzerland. His aim was to produce a language containing a
small number of fundamental programming concepts that would be suitable for teaching programming as a
logical and systematic discipline, and also be capable of efficient implementation on most computers.

This is a simple Pascal program to display “Hello” on the screen.

PROGRAM first;

BEGIN

 Write(‘Hello’)

END.

Exercises

1) Add another line to display “Good Morning” immediately after the previous line.
2) Modify the above program to display above two text in two different lines.

This is another simple program to read two numbers and display the summation of two numbers.

PROGRAM add;

VAR

 x,y,z : integer;

BEGIN

 read(x);

 read(y);

 z := x + y;

 write(z)

END.

Improved version of the above program

PROGRAM add;

VAR

 x,y,z : integer;

BEGIN

 write(‘Enter first number : ‘);

 read(x);

 write(‘Enter second number : ‘);

 read(y);

 z := x + y;

 write(‘Sum = ‘, z)

END.

2

STANDARD DATA TYPES

INTEGER - Whole numbers
REAL - real numbers
CHAR - Characters
BOOLEAN - true or false

Exercises
1) Modify the above program to display the difference of two numbers.
2) Modify the above program to display the product of two numbers.
3) Modify the above program to display the summation of the squares of two numbers (සංඛ්‍යා දෙදේ

වර්ගවල එකතුව).
4) Modify the above program to divide two numbers.
5) Write a program to calculate the hypotenuse (longest side) of a RIGTH TRIANGLE given other 2 sides.

(සෘජුදකෝණී ත්‍රිදකෝණයක කුඩා පාෙ දෙදේ අගයන් දී ඇතිවිට කර්ණදේ (දිගම පාෙය) දිග දසවීම)

Consider our first program that display the word “Hello”. To display “Hello” in 3 times, we can use

 writeln(‘Hello’);
 writeln(‘Hello’);
 writeln(‘Hello’);

This is OK for small numbers, if you want to repeat it 100 times ?????

REPETITIVE STATEMENTS

An important class of action in computer programs is the loop, which enables the repetition of some
statement, or group of statements, subject normally to some termination condition.

Pascal provides 3 repetitive constructs which reflect the needs of loop construction in most programming
situations,

 WHILE statement
 REPEAT statement
 FOR statement

FOR statement

The FOR statement may be used for operations which are to be carried out a pre-defined number of times.

For example, to display word “Hello” for 10 times, you can use following code.

PROGRAM rep1;

VAR

 i : integer;

BEGIN

 FOR i := 1 TO 10 DO

 writeln(‘Hello’)

END;

3

Exercises:

1) Modify the above program to display as follows:

Hello 1

Hello 2

..

..

..

Hello 10

2) Modify the above program to display above line any number of times.

3) Modify the above program to display as follows:

Hello 1

Good Morning

Hello 2

Good Morning

..

..

..

Hello 10

Good Morning

4) Write a program to display following out put; 2 times table.

2

4

6

8

..

..

24

5) Modify the above program to display:

 2 x 1 = 2
 2 x 2 = 4
 2 x 3 = 6
..
..
 2 x 12 = 24

6) Modify the above program to display N times table (N වරේ).

4

This program will read set of numbers and calculate the total value.

PROGRAM sum;

VAR

 x, n, i, total : integer;

BEGIN

 write(‘How many numbers ? : ‘);

 read(n);

 writeln;

 total := 0;

 FOR i := 1 TO n DO

 BEGIN

 write(‘Enter number : ‘);

 read(x);

 total := total + x;

 END;

 Writeln;

 writeln(‘Total = ‘, total)

END.

Exercise

1) Modify the above program to calculate the AVERAGE also.

5

WHILE statement

WHILE statement may be used for operations which are to be carried out while a condition (expression)
remains true.

We can re-write the previous program using WHILE statement as follows.

NOTE: We do not need to know the number of items at the beginning, instead read numbers one by one
and at the end we enter an unusual number, say -999 to indicate that our number are over.

PROGRAM sum2;

VAR

 x, total, count : integer;

 average : real;

BEGIN

 total := 0;

 count := 0;

 write(‘Enter number : ‘);

 read(x);

 WHILE (x <> -999) DO

 BEGIN

 count := count + 1;

 total := total + x;

 write(‘Enter number : ‘);

 read(x)

 END;

 average := total / count;

 writeln;

 writeln(‘Total = ‘, total);

 writeln(‘Average = ‘, average:5:2)

END.

6

REPEAT statement

The sequence of statements between the REPEAT and UNTIL symbols is executed and the condition
(expression) is evaluated. If its value true then the REPEAT statement is terminated, otherwise execution of
the statement sequence is repeated until the expression becomes true.

The essential difference between REPEAT and WHILE statements is the in the REPEAT statement the loop
body is performed at least once, before the first evaluation of the termination condition, whereas in the
WHILE statement the terminating condition is evaluated first and so the loop body may not be executed at
all.

We can rewrite the previous program using REPEAT statement as follows.

PROGRAM sum3;

VAR

 x, total, count : integer;

 average : real;

BEGIN

 total := 0;

 count := 0;

 write('Enter number : ');

 read(x);

 REPEAT

 count := count + 1;

 total := total + x;

 write('Enter number : ');

 read(x)

 UNTIL (x = -999);

 average := total / count;

 writeln;

 writeln('Total = ', total);

 writeln('Average = ', average:5:2);

END.

7

NESTED REPETITIVE statements

The body of the repetitive statement may itself contain another repetitive statement, in which case
repetitive statements are said to be nested. This nesting of repetitive statements is illustrated in next
programe, which reads an integer N and calculates the sum of the series

 11 + 22 + 33 + … + nn.

PROGRAM sumofpowers;

VAR

 n, x, power, i, sum : integer;

BEGIN

 write(‘N = ‘);

 read(n);

 sum := 0;

 FOR x := 1 TO n DO

 BEGIN

 power := 1;

 FOR i := 1 TO x DO

 Power := power * x;

 sum := sum + power

 END;

 writeln(‘Sum = ‘, sum)

END.

CONDITIONAL STATEMENTS

It is often necessary to make the execution of a statement dependent upon some condition, or else at some
point to choose to execute one of a number of possible statements depending upon some condition. Pascal
provides 2 statement for this purpose

 IF statement
 CASE statement

8

IF statements

IF statement allows the conditional execution of one statement, or the choice between execution of 2
statements.

Following program reads AGE and display a warning message “Sorry! you are NOT allowed” if his/her AGE
less than 18.

PROGRAM cond1;

VAR

 age : integer;

BEGIN

 write(‘Please enter your age in years : ‘);

 read(age);

 IF age < 18

 THEN

 writeln(‘Sorry! you are NOT allowed’);

 writel(‘Thanks’);

END.

Following program reads MARKS of a subject and display ‘PASS’ if marks greater than or equal to 40,
otherwise display ‘Fail’.

PROGRAM cond2;

VAR

 marks : integer;

BEGIN

 write(‘Enter marks : ‘);

 read(marks);

 IF marks >= 40

 THEN

 writeln(‘Pass’)

 ELSE

 writeln(‘Fail’)

END.

9

Improved version of the above program using a BOOLEAN variable.

PROGRAM cond3;

VAR

 marks : integer;

 pass : boolean;

BEGIN

 write(‘Enter marks : ‘);

 read(marks);

 pass := (marks >= 40);

 IF pass

 THEN

 Writeln(‘Pass’)

 ELSE

 writeln(‘Fail’)

END.

The following program read students marks and display the GRADE accordingly.

PROGRAM cond4;

VAR

 marks : integer;

 grade : char;

BEGIN

 write(‘Enter marks : ‘);

 read(marks);

 IF (marks >= 75)

 THEN

 grade := ‘A’

 ELSE

 IF (marks >= 65)

 THEN

 grade := ‘B’

 ELSE

 IF (marks >= 55)

 THEN

 grade := ‘C’

 ELSE

 IF (marks >= 40)

 THEN

 grade := ‘S’

 ELSE

 grade := ‘W’;

 writeln(‘Your grade is ‘, grade)

END.

10

Exercises
1) Write program to input the MONTH as a number (1,2,..12) and display the NUMBER OF DAYS in that

month. Assume February has 28 days. (HINT: you have to combine several conditions with OR
operator).

2) Write program to input the YEAR (assume the range 1901 to 2099) and display whether it is a LEAP
year (අධික අවුරුද්ෙේ) or NOT.

3) Extend the above program for any year.

IN statement

The operator IN is used to test the presence of an individual member in a set.

For example, consider following conditional statement:

IF (x = 1) OR (x = 5) OR (x = 7) OR (x = 12) OR (x = 15)

can be re-written more efficiently, clearly using IN statement as

 IF x IN [1, 5, 7, 12, 15]

We can specify a RANGE in IN statement, like

 x IN [0..100], letter IN [‘a’..’z’]

Exercises
1) Re-write the program in ex 1) above using IN statement.

Following program will read a sentence ending with period (.) and count the number of total characters.

PROGRAM cnt;

VAR

 ch : char;

 count : integer;

BEGIN

 count := 0;

 read(ch);

 WHILE ch <> ‘.’ DO

 BEGIN

 count := count + 1;

 read(ch)

 END;

 Writeln(‘Number of characters = ‘, count);

END.

11

As above program count BLANK SPACES as characters, we can modify the program to count characters
except BLANK CHARACTERS.

PROGRAM cnt;

VAR

 ch : char;

 count : integer;

BEGIN

 count := 0;

 read(ch);

 WHILE ch <> ‘.’ DO

 BEGIN

 IF ch <> ‘ ‘

 THEN

 count := count + 1;

 read(ch)

 END;

 Writeln(‘Number of characters = ‘, count);

END.

Exercises

1) Modify the above program to count the number of SPACES (blank characters) in the statement.
2) Modify the above program to count number of VOWELS in the statement.
3) Modify the above program to count number of CONSONENTS (VOWELS දනාවන ඉංග්‍රීසි අකුරු).
4) Modify the above program to count number of CAPITAL Letters.

The CASE statement

One complex selection pattern which occurs frequently in programming, and so deserves special
consideration, is the SELECTION of one of a set of actions according to the value of some expression. This
could be expressed ad a nested IF statement, e.g.,

 IF ch = ‘I’ THEN n := 1 ELSE

 IF ch = ‘V’ THEN n := 5 ELSE

 IF ch = ‘X’ THEN n := 10 ELSE

 IF ch = ‘L’ THEN n := 50

A more elegant way of expressing such in action in Pascal is to use the CASE statement.

 CASE ch OF

 ‘I’ : n := 1;

 ‘V’ : n := 5;

 ‘X’ : n := 10;

 ‘L’ : n := 50

 END;

12

We can re-write the previous exercise of finding the number of days in a month as follows.

PROGRAM ndays;

VAR

 Month, days : integer;

BEGIN

 write(‘Enter month (MM): ‘);

 read(month);

 CASE month OF

 1,3,5,7,8,10,12 : days := 31;

 4,6,9,11 : days := 30;

 2 : days := 28

 ELSE days := 0

 END;

 write(‘Month’, month:3, ‘ has’, days:3, ‘ days’);

END.

ARRAYS

Pascal provides a data structure called the ARRAY, which can store a fixed size sequential collection of
elements of the same type.

Instead of declaring individual variables, such as number1, number2, .., numberN, you declare one array
variable such as numbers and use numbers[1], numbers[2], .., numbers[n] to represent individual variables.

This program reads set of numbers and display it in reverse order.

PROGRAM arr;

VAR

 i, n : integer;

 num : ARRAY [1..50] of integer;

BEGIN

 write(‘How many numbers : ‘);

 read(n);

 FOR i := 1 TO n DO

 read(num[i]);

 FOR i := n DOWNTO 1 DO

 Write(num[i], ‘ ‘);

END.

13

This program reads characters as an array and displays 2nd and 3rd characters.

PROGRAM arr2;

VAR

 name : ARRAY [1..50] OF char;

 i : integer;

BEGIN

 FOR i := 1 TO 10 DO

 read(name[i]);

 write(name[2]);

 writeln(name[3]);

END.

Character STRINGS

To read a sequence of character strings, we may use variable type STRING.

VAR

 name : string;

and name can be any sequence of characters, like

 name := ‘Colombo’ or name := ‘Saman Perera’ or name := ‘Good Morning’.

Following program will read your name and display it on the screen.

PROGRAM str;

VAR

 name : string;

BEGIN

 write(‘Type your name here : ‘);

 read(name);

 writeln(name)

END.

14

SUB PROGRAMS

A sub-program is a program unit/module that performs a particular task. These sub-programs are combine
to form a larger programs. A sub-program can be invoked by a program/sub-program which is called the
calling program.

PROCEDURES

Procedures are sub-program that allow to obtain a group of results.

Following is the source code for the PROCEDURE findmax(). This will find the maximum number of two
variables x and y. All variables x, y, max will be defined in the main program.

PROCEDURE findmax;

BEGIN

 IF x > y THEN max := x ELSE max := y;

END;

Calling the PROCEDURE

While creating a procedure, you give a definition of what the procedure has to do. To use the procedure,
you will have to call that procedure to perform the defined task. When a program calls a procedure,
program control is transferred to the called procedure. A called procedure performs the defined task, and
when its last end statement is reached, it returns the control back to the calling program

PROGRAM maximum;

VAR

 x,y, max : integer;

 PROCEDURE findmax;

 BEGIN

 IF x > y THEN max := x ELSE max := y;

 END;

BEGIN

 write(‘Enter 2 numbers : ‘);

 read(x,y);

 findmax;

 writeln(‘Maximum is ‘, max);

END.

The above PROCEDURE find the maximum number of the variables x, and y. In practice, it is more
convenient to declare a procedure which find maximum of any two numbers, not just given x, and y. Then, if
at some point in the program we wish to find the maximum of x and y, we may write

 findmax(x, y);

whereas if, at another point, we wish to find the maximum value of y and another integer variable z, we may
write

 findmax(y, z);

15

This is possible in Pascal by the declaration of a procedure which includes a formal-parameter-list in it
heading as follows.

 PROCEDURE findmax(p, q : integer);

 BEGIN

 IF p > q THEN max := p ELSE max := q;

 END;

Ex: Write a complete program to implement the above. Hint: Read 3 variables x, y, & z and find maximum
of x and y and maximum of y and z.

Value Parameters

A value parameter is used when the parameter’s only role is to carry a value into a procedure (input
parameter).

The following procedure accepts two integer values representing a distance in feet and inches and writes it
out in meters. In this case, feet and inches are value parameters.

PROCEDURE writeasmeters(feet, inches : integer);

VAR

 meters : real;

BEGIN

 inches := 12 * feet + inches;

 meters := inches / 39.39;

 write(meters:6:2);

END;

Ex: Write a complete program to implement the above.

16

Variable Parameters

A variable formal-parameter is used to denote an actual-parameter whose value may be altered by
execution of the procedure.

In some cases, the procedure may use the existing value of an actual variable parameter before changing it.
For example, the following procedure order examines and, if necessary, exchanges the values of its two
parameters.

 PROCEDURE order (VAR a,b : integer);

 VAR i : integer;

 BEGIN

 IF a > b

 THEN

 BEGIN

 t := a;

 a := b;

 b := t

 END

 END;

Ex: Write a complete program to implement the above.

FUNCTIONS

Pascal not only provides standard functions (like sqr, sqrt, etc which do not require any declaration in the
program) but also a means whereby the programmer can declare his / her own functions and have them
evaluated, with appropriate parameters, as components of expressions. A function is a special form of
procedure which describes a computation that produces a single value as its result.

The following is an example of a function-declaration defining a function max which yields as its result the
larger of the values of its two real value parameters x and y.

 FUNCTION max (x,y : integer) : integer;

 BEGIN

 IF x > y THEN max := x ELSE max := y

 END;

You may call this FUNCTION as

 BEGIN

 write(‘Enter two numbers : ‘);

 readln(a,b);

 c := max(a,b);

 writeln(‘Maximum = ‘, c);

 END.

17

Ex1: Write a function to convert the temperature from Centigrade to Fahrenheit and call the function in
main program.

RECURSION

In Pascal, a procedure or function is permitted not only to call another procedure or function but also to call
itself. Such a call is said to be recursive.

Consider for example the process which accepts a non-negative integer value and outputs the sequence of
decimal digits representing the number in reverse oder.

BEGIN
 output last digit of N;
 IF digits remain
 THEN reverse remaining digits
END

The above process may be written in Pascal, as a recursive procedure,

 PROCEDURE reverse(n : longint);

 BEGIN

 write(N MOD 10);

 IF N DIV 10 <> 0 THEN reverse(N DIV 10)

 END;

Consider a variation of above – one which reads a sequence of characters of arbitrary length terminated by
some special character as ‘.’ say., and prints the sequence in reverse.

 PROCEDURE reverseinput;

 VAR c : char;

 BEGIN

 read(c);

 IF c <> ‘.’ THEN reverseinput;

 Write(c)

 END;

Many mathematical functions are defined recursively and it thus appears natural to write recursive
functions to compute their values. The factorial function is a familiar example which may be defined as

 factorial(0) = 1
 factorial(n) = n * factorial(n-1) for n > 0

and so a Pascal function may be declared to evaluate the factorial of a given value n.

 FUNCTION fac(n : longint) : longint;

 BEGIN

 IF n = 0 THEN fac := 1

 ELSE fac := n * fac(n-1)

 END;

